CCS Technical Documentation NHL-2NA Series Transceivers

Camera Module

[This page left intentionally blank]

Table of Contents

	· - 9-	
Abbreviations	4	
Camera Module	5	
Key specification	5	
Electrical specifications	5	
Block diagram	5	
Signal description	6	
DC characteristics	7	
Signals specifications	8	
Signals and timing	8	
Synchronization		
Image formats and frame rate	9	
Sub LVDS specification	9	
Camera control interface	11	
General	11	
Operating procedure	11	
Mode description		
Operation flow chart	11	
Mechanics	12	

List of Figures

Fig 1	Block diagram of camera module	.6
	CCP interface between camera and engine	
Fig 3	Basic bus timing	.8
Fig 4	sub LVDS configuration	.10
Fig 5	Top view	.13
-	-	

Page No

Abbreviations

VGA	Video Graphic Array
CIF	Common intermediate format
CCI	Camera Control Interface
LVDS	Low voltage differential signals
CCP	Compact camera port
CDS	Correlated double sampling
AGC	Automatic gain control
ADC	Analog digital converter
TG	Timing generator
SG	Synchronization generator
PLL	Phase locked loop
VCO	Voltage control oscillator
AWB	Automatic white balance
AES	Automatic electronics shutter

Camera Module

Key specification

The table below shows the key specification of the VGA2 camera module (TCM8002MD).

	Array format	active: 660 H x 492 V
Image sensor	color filter	RGB bayer arrangement
iniuge sensor	Optical format	1/4 "
	pixel size	5.4 um
	F no.	2.8
	H view angle	53 degrees(H) / 39(V) / 65(D)
lens	focal length	3.5 mm
	focus range	30 cm to infinity
	focus adjustment	Object distance for adjustment is infinity.
	image signal output	CCP (sub LVDS serial output)
	output image format	YUV 4:2:2, RGB 5:6:5, sensor 10 bit raw data
	image size	A variety of size is supported. See table 6
Interface	frame rate	typical : 15 fps
	master clock	External clock is supplied.
	control interface	CCI bus
	mechanics	13-pin spring connector
Power source	VDD=DC 2.78 +/- 0.	13 V and VDDI =DC 1.8 +/- 0.1
Current consumption	VDD on & VDDI	34 mA typical for VDD, 7 mA typical for VDDI
Current consumption	VDD off & VDDI	1 uA
Dimension	16 mm (H) x 20 mm (W) x 8.9 mm (D) excluding protrusion of connector
Weight		1.6 gram
	operation	-30 to + 70 centigrade
Temperature range	full quality	-10 to + 40 centigrade
	storage	-40 to + 85 centigrade

Table 1: Key specification

Electrical specifications

Block diagram

The figure below shows the block diagram of the VGA2 camera module connected to Nokia Engine.

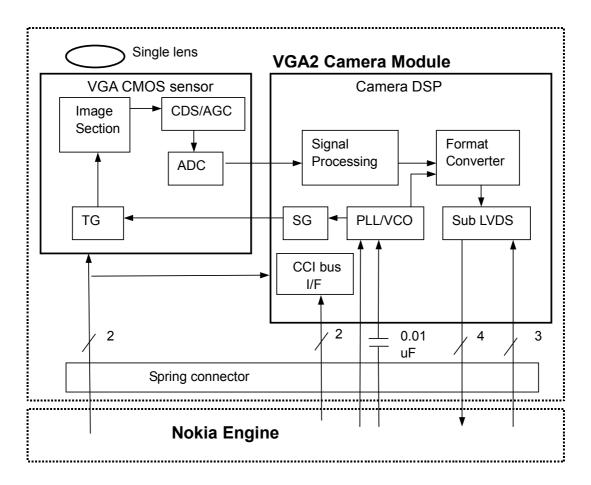


Figure 1: Block diagram of camera module

Signal description

The following description indicates the meaning of each signal shown in figure above.

- (1) VDD Supply voltage to the main circuits of a camera module
- (2) GND2 Ground line corresponding to VDD
- (3) D + Fast serial data out
- (4) VDDI Supply voltage to sub LVDS circuit. This voltage can be always applied, even if the Vctrl is off.
- (5) D Fast serial data out of which is inverted to D+
- (6) SDA Serial data line of CCI bus
- (7) GND1 Ground line corresponding to VDDI
- (8) SCL Serial clock line of CCI bus
- (9) Clk + Fast serial clock
- (10) Vctrl This signal is used for sub LVDS circuit to be shut off in order to reduce stand-by current of a camera module. "High" designates "ON". Please see the operation flow chart.
- (11) Clk Fast serial data out of which is inverted to Clk+
- (12) GND3 Ground line corresponding to Extclk.
- (13) Extclk System clock from Nokia engine to the camera module. This signal is sinusoidal by RC filtering on Nokia engine. Extclk is AC coupled to the camera module through a capacitor of which capacitance is more than

0.01 uF. Extclk has 4 operating modes depending on the wireless system in which the camera module is used. The Extclk is active before VDD is on. This Extclk shall be exclusively used for generating any other clocks

DC characteristics

(1) Maximum ratings

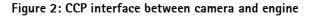
VDD	3.6 V				
VDDI	2.7 V				
Input signals, min	-0.3 V				
Input signals, max	VDDI (1.8V) + 0.3 V				
Note: Values respect to GND.					

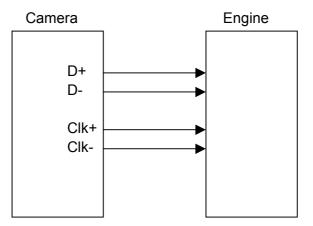
(2) DC characteristics of each signal are shown in the table below.

Signal name	Signal name Type		Min	Тур	Max	Unit
VDDI	Ι	N	1.7	1.8	1.9	V
VDDI current ² consumption				7	10	mA
D+,D-,	0		VDDI/2 - 0.1	VDDI/	VDDI/2 + 0.1	V
Clk+,Clk	0	UT	1	104	120	MHz
	Ι	N	0.5	1	1.2	V peak-peak
	Mo	ode	6.45/12.9	6.5/13.0	6.55/13.1	MHz
	Mo	ode	9.55/19.1	9.6/19.2	9.65/19.3	MHz
ExtCl	Mo	ode	8.35/16.7	8.4/16.8	8.45/16.9	MHz
	Mo	ode	9.67/19.34	9.72/19.44	9.77/19.54	MHz
	The wave shape is sinusoidal by applying LPF in a host					
SDA, SCL	IN/	OUT	0.3*VDDI	- 0.7*VDDI		VIL, VIH
VDD	Ι	N	2.65	2.78	2.91	V
Stand-by	Ext(oper			1	5	uA
Current(*1)	ExtClk 500mVpp			1	5	uA
VDD curren*2 consumption				34	40	mA
Vctr	IN	High	VDDI x 0.7		VDD	V
v cu	IIN	Low	0		VDDI x 0.3	V

Table 2: DC characteristics of each signal

*1 Measuring conditions of typical value

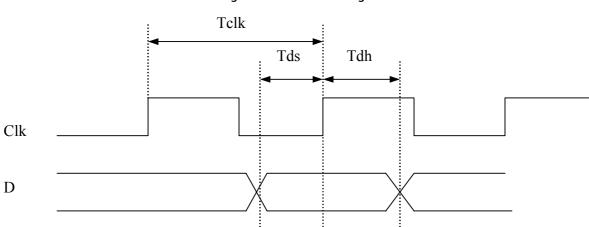

VDD Off, VDDI 1.8V On, VCtrl Off, ExtClk Open or 500mVp-p, Temperature 25C


Lens capped.

Signals specifications

Signals and timing

The fast serial interface of digital image data is employed for the VGA camera module. The fast serial interface described in this document is named CCP (Compact Camera Port). In terms of signaling scheme, CCP is based on the idea of IEEE standard LVDS signaling scheme (current mode differential low voltage signaling method). CCP described in this document utilizes lower voltage than that of standard LVDS. The low voltage LVDS is named in this document sub LVDS. CCP is an one-way differential serial camera connection with clock and integrated line / frame synchronization:



D+ and D- are differential picture data output from the camera module. This data is written on each falling edge of **Clk**. Data format is least significant bit first. When nothing is being transferred, **D** remains high, except in power shut-down.

Clk+ and Clk- are differential pixel clock. Data should be read by the receiving end on rising edge. When nothing is being transferred, **Clk** remains high, except in power shut-down.

The figure below shows the basing timing between D and Clk schematically. In the table below the AC characteristics in D and Clk relation are shown.

Figure 3: Basic bus timing

Parameter	Abbreviation	Min time	Max time			
Bus clock cycle	Tclk	8.3 ns (120MHz)	1000 ns (1 MHz)			
Data set-up time before Clk rising	Tds	1ns				
Data hold time	Tdh	2 ns				

Table 3: AC timing between D and Clk

	Min	Тур	Max	Unit
Clk duty	40/60	50/50	60/40	%

Synchronization

Each image line that is received begins with line synchronization code and ends with line end code. Each frame begins with frame synchronization code and ends with frame end code. At frame start and frame end no line synchronization are added but they are replaced by the frame synchronization.

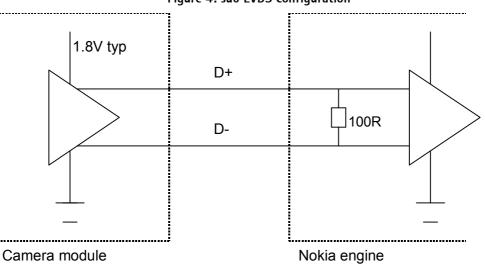
Image formats and frame rate

The table below shows the relationship between Extclk and CCP frequency to keep the frame rate constant (approximately 15 fps). Each mode on the table below can be selected by CCI bus command setting from Nokia engine.

Mode	Extclk	CCP frequency	Pixel clock			Frame rate
	MHz	MHz	MHz	clock per H	fps	
1	6.5/13.0	104.0	6.50	828	14.952	
2	9.6/19.2	115.2	7.2	916	14.972	
3	8.4/16.8	100.8	6.30	802	14.962	
4	9.72/19.44	116.6	7.29	928	14.962	

Table 4: Frequency relationship for each Extclk (VGA image)

The table below shows image size format of the respective image made from the original full VGA. Each CCP frequency shown on the table below designates the ratio to CCP frequency of full VGA at 15 fps.


In case of subsampling QVGA, subsampling QQVGA and subsampling QCIF, 30 fps operation is supported as well as 15 fps. In this case, CCP frequency becomes twice.

Sub LVDS specification

General

The fast serial transfer of image data from the camera module to Nokia engine is to be

achieved based on 1.8 power supply condition. Accordingly, modified LVDS type current mode transmitters/receivers is used. In this document, the LVDS scheme which is modified corresponding to 1.8 V is named sub LVDS. The figure below shows simplified configuration of sub LVDS

DC, AC characteristics

DC characteristics, AC characteristics (transmitting end) and (receiving end) are shown in the tables below.

Item	Min	Тур	Max	Unit
Bus operating voltage	1.7	1.8	1.9	V
Absolute maximum rating	- 0.3		VDDI +	V

Table 6: AC characteristics of camera module

Parameter	Signal level	Signal level			
	Min	Typical	Max		
Input voltage range	VDDI/2-0.1	VDDI/2	VDDI/2+0.1	V	
Differential voltage swing Vod	100	150	200	mV	
Output impedance RO	40	100	140	Ohm	
Operating frequency	1		120	MHz	
Clock duty cycle @ 120 MHz	40	50	60	0/0	
Vod rise time 20% - 80%	300		500	ps	
Vod fall time 80% - 20%	300		500	ps	

Note: Vod is measured with 100 ohm termination.

Camera control interface

General

The camera control interface configuration is based on fast mode IIC(i.e. I^2C) bus.

Slave address

The Camera Module control interface has got slave address 78h. General call address and start byte are not supported.

Sub address

A sub address for internal register are prepared. Width of sub address is 8 bits, and each address has 8 registers. The camera module has the function of increment addressing, the host can operate continuous addresses by one sequence. After system reset by Power ON (when VDD is applied) subaddress becomes 00'h.

Read & write

Nokia engine can read and write all registers' data except for test registers.

Operating procedure

Mode description

This camera module supports following two operating modes.

- Normal mode
 This mode means continuous image capturing operation.
 (Namely every frame is output.)
- 2 Long storage mode This mode means intermittent image capture operation (one frame out of every four frame) particularly in case of long time exposure. Nokia engine submits a command to set this mode.

Operation flow chart

(1) For Power-on, the following order is necessary.

 $\begin{array}{ccc} \text{VDDI(1.8 V) power ON} \rightarrow \text{Extclk ON} \rightarrow \text{Vctrl ON} \rightarrow \text{VDD(2.8 V) Power ON} \rightarrow \\ & \text{T1} & \text{T2} & \text{T3} & \text{T4} \\ \text{Command for initializing} \rightarrow \text{Image data output start.} \\ & \text{T5} & \end{array}$

The camera has default values of parameters for start-up action. The host can change

the parameter values by sending the parameter value via CCI bus. In this case these changed values are not memorized in the camera module because no EEPROM is provided inside.

Accordingly. after power-off, the host must send the values again if the same operation is necessary. The necessary time interval for moving to the next operation is listed in Figure 9. For the external clock of 6 MHz (lowest), the pixel clock becomes 1.5 MHz (without VCO). In this case, one vertical scanning period is 273 msec t the maximum value).

In the figure below, "VD" is internal synchronization pulse to show vertical scanning period.

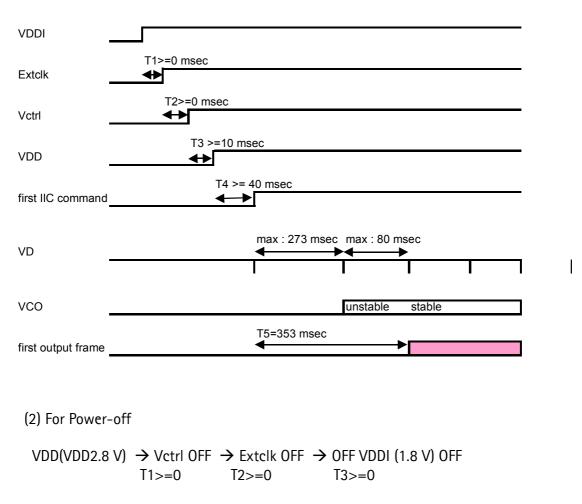


Figure 9. operation sequence in power-on

Mechanics

Mechanics drawing in the file of "TCM8002MD external view.pdf".

The camera module has got a plastic lens holder with a metallized surface. The lens barrel part does not have metallization. The material of the lens holder plastic is 30% metal coated carbon. The lens barrel material is non-conductive carbon. The lens holder has a curved rib for attaching the module into the mobile phone. The connector is the spring type. The PWB material is FR4. Pin assignment is shown in Figure 9 and Table 9.

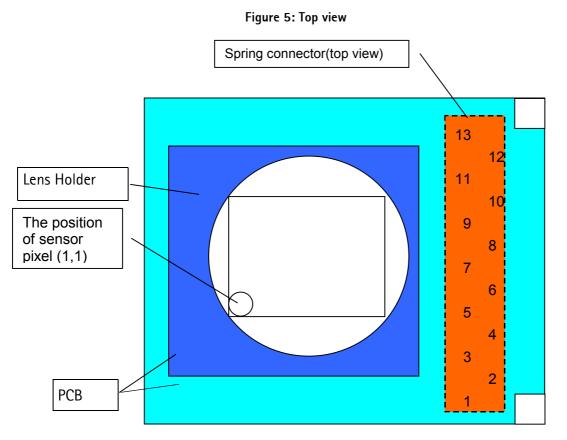


Table 7: Pin assignment

Pin number	1	2	3	4	5	6	7	8
Pin name	VDD	GND2	D+	VDDI	D-	SDA	GND1	SCL
Pin number	9	10	11	12	13			
Pin name	CLK+	Vctrl	CLK-	GND3	EXTCLK			

This page intentionally left blank.